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Abstract—With the ever-increasing rise of a wide range of 

data-driven applications and services, as well as the synergies of 
gigabit wireless connectivity and pervasive broadband 
connectivity, there is a need for a paradigm shift in network 
methodologies to develop and deploy networks, such as 5G 
wireless.  User-centric approaches to implementing self-
organizing networks (SON) using machine learning (ML) have 
the potential to address the above challenges for 5G wireless 
communications networks and provide a seamlessly connected 
eco-system with superior user experience.  This paper focuses on 
the potential performance improvements that can be achieved by 
integrating self-organizing networks and machine learning using 
user-centric approaches, with a focus on self-healing and self-
optimizing SON functions.                                                                                                              

Index Terms — 5G, ML, SON, User-centric approach 

I. INTRODUCTION 

The next generation wireless communication network vision 

is to build a seamlessly connected eco-system with superior 

user experience that can be evaluated using metrics such as 

QoS (Quality of Service) and QoE (Quality of Experience). 

Emerging 5G technologies takes us one step closer towards 

realizing this vision. By supporting new types of applications 

and the flexible use of spectrum, including never before used 

millimeter wave (mmWave) frequencies in cellular systems, 

5G will provide the communications foundation for a future 

world of augmented and virtual reality, autonomous cars, 

smart cities, wearable computers, and innovations that are not 

yet conceived [1]. Cisco’s projection of global mobile data 

consumption through 2021 depicted in Fig. 1 shows that the 

overall mobile data traffic is expected to grow to 49 exabytes 

per month by 2021 [2]. Network operators are under constant 

pressure of deploying denser networks that can sustain the 

tremendous growth in connected devices, types of services and 

applications, and mobile data traffic volume at acceptable 

levels of capital expenditures (CAPEX), operational 

expenditures (OPEX), and energy consumptions. 

Consequently, network automation has gained significant 

momentum. Network automation of ultra-dense networks 

would require tools that are highly intelligent and scalable to 

manage the complexities of such networks and consistently 

enhance the network performance to achieve end-user 

satisfaction. User-centric approaches to implementing self-

organizing networks using machine learning have the potential 

to redefine the art of the possible and design a future network 

that could meet the above-mentioned challenges and is the 

basis for this research. This paper focuses on the potential 

performance improvements that can be achieved by integrating 

self-organizing networks and machine learning using user-

centric approaches, with a focus on self-healing and self-

optimizing SON functions. This paper is organized as follows: 

Section II provides an overview of the research domain. 

Section III covers application and methodologies to illustrate 

the initiatives taken by the authors towards integrating SON 

and ML using user-centric approaches.  The paper ends with 

concluding remarks in Section IV. 

 

 

Fig.1 Global mobile data projection from 2016 to 2021. (CAGR – 

compound average growth rate) [2]. 

II. OVERVIEW OF SON, ML, AND USER-CENTRIC APPROACHES 

A. Self-Organizing Networks 

The concept of a self-organizing network (SON) for wireless 

mobile communication was first introduced in 3GPP Release 8 

and is further developed in the current standardization of 

3GPP Release 16. The main drivers were reducing the large 

number and complex structure of network parameters, quick 

evolution of wireless networks that has led to parallel 

operations of 2G, 3G, 4G and now 5G technologies, and the 

rapidly expanding number of network nodes (base 

stations/eNodeBs/gNodeBs) that need to be configured and 

managed with the least possible human interaction [3]. 

Automation of network planning, configuration, and 

optimization processes via the use of SON functions can help 

network operators to reduce OPEX by reducing manual 

involvement in such tasks [4]. Based on the location of the 

SON algorithm, SON architecture can be centralized (C-SON), 
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distributed (D-SON) or a hybrid (H-SON) solution as shown 

in Fig. 2(a), Fig. 2(b), and Fig. 2(c) where NFs are the 

Network Functions, CN is the core network, and RAN is the 

Radio Access Network [5]. 

Fig. 2(a) C-SON view 

Fig. 2(b) D-SON view 

Fig.2(c) H-SON view 

 

SON solutions, which have been standardized by 3GPP, can 

be divided into three categories: Self-Configuration, Self-

Optimization, and Self-Healing each of which can be 

described as follows [5-7]. 

Self-configuration is the process of automatically 

configuring network nodes and parameters including dynamic 

plug-and-play configuration of newly deployed network nodes 

where a network node will, by itself, configure operational 

parameters, radio parameters, and neighbor relations. This 

includes dynamic configuration and assignment of physical 

cell identity (PCI), transmission frequency, transmission 

power, X2 and S1 interfaces, IP addresses, connections to IP 

backhaul, and automatic neighbor relations (ANR) and other 

such functions that are required for a newly deployed network 

node to become fully operable.  This initial configuration of 

network parameters may successfully be able to manage a 

network in a static environment, but since the real-world 

environment is not static, there is a need for further 

optimization.  

Self-optimization can be defined as a function that 

constantly monitors the network parameters and its 

environment and updates system parameters in order to 

guarantee that the network performs as efficiently as possible 

and optimizes coverage, capacity, handover, and interference 

management. Self-optimization involves functions such as 

mobility load balancing (MLB) where network nodes 

exchange information about load level and available capacity 

by means of radio resource status reports in order to transfer 

load from congested cells to other cells, mobility robustness 

optimization (MRO) that performs mobility management and 

handover parameter optimization for automatic detection and 

correction of errors in the mobility configuration, random 

access channel (RACH) optimization where a UE can be 

polled by a network node to obtain RACH statistics that can be 

used to minimize the number of attempts on the RACH 

channel reducing interference, interference coordination to 

keep inter-cell interference under control by managing radio 

resources, and energy efficiency to enable a greener network 

where some network nodes can be switched off during off-

peak-traffic situations when capacity is not needed. While 

these optimization strategies can help improve network 

performance, partial or full outages may occur due to various 

faults and failures that can degrade the overall performance of 

the network and require self-healing.  

Self-healing is activated whenever a fault or failure occurs, 

and its objective is to continuously monitor the network in 

order to ensure a fast and seamless recovery by automatic 

detection and removal of failures so that the network can 

return to proper functioning. Self-healing includes functions 

such as anomaly detection that is automatically able to detect 

faults and failures that have occurred in the network, fault 

diagnosis or classification that can determine the causes of the 

problems to find the correct solution, and cell outage 

management to implement compensation mechanisms in order 



 

to minimize the disruption caused in the network until the 

completion of recovery operations. The self-healing function 

in future networks is expected to proactively predict the faults 

and anomalies to take necessary measures to mitigate network 

degradation before a fault or failure actually happens. The 

SON categories and functions are summarized in Fig. 3. 

 

 

Fig. 3 Taxonomy of self-organizing networks 

 

The full automation of SON is desirable to maximally 

reduce the OPEX of the networks, and to achieve the fastest 

reaction to the network issues but in order to prevent any 

major negative network impact due to improper SON actions, 

it is critical that the network operators build the confidence 

about the SON functions step by step before allowing the SON 

process to run fully autonomously, thus human intervention of 

the SON process needs to be allowed [5]. In accordance to 

this, SON process can be categorized as open loop or closed 

loop. Network operators have the flexibility to stop, resume, 

and cancel the SON process and make adjustments to the 

network as needed in an open loop SON process. Once the 

network operators have built adequate confidence, they may 

convert the open loop SON process to a closed loop SON 

process that will be completely autonomous. This can be 

achieved with the help of machine learning such that the SON 

networks can not only achieve the fastest reaction to the 

network issues but also be able to take proactive measures 

based on ML-based predictions. 

B. Machine Learning 

Machine learning (ML) is the ability of systems to acquire 

their own knowledge, by extracting patterns from raw data to 

address problems involving knowledge of the real world and 

make decisions that appear to be subjective [8]. ML 

algorithms can be categorized into supervised, unsupervised 

and reinforcement learning which are described as follows [7]:  

Supervised learning, as the name implies, requires a supervisor 

in order to train the system. This supervisor tells the system, 

for each input, what is the expected output and the system then 

learns from this guidance. Unsupervised learning, on the other 

hand, does not have the luxury of having a supervisor. This 

occurs, mainly when the expected output is not known, and the 

system will then have to learn by itself. Reinforcement 

Learning (RL) works similarly to the unsupervised scenario, 

where a system must learn the expected output on its own, but 

a reward mechanism is applied. If the decision made by the 

system was good, a reward is given; otherwise, the system 

receives a penalty. This reward mechanism enables the RL 

system to continuously update itself, while the previous two 

techniques provide, in general, a static solution. The block 

diagram in Fig. 4 [9] describes the basic structures of each of 

these ML categories.  

ML will play a pivotal role in implementing SON network 

functions described in Fig. 3. ML-based 5G SON platforms 

will be able to leverage the extensive amount of data generated 

across the network creating new opportunities for data 

monetization. Current SON solutions lack massive intelligence 

required for end-to-end network visibility, self-coordination 

required in SON functionalities to create a conflict-free 

reliable SON, a certain degree of transparency to network 

operators without compromising the degree of automation, 

network ability to adapt to long-term dynamics by developing 

solutions for longer timescales to improve system-efficiency, 

network strategies that are more energy-efficient, a holistic 

approach to define the right Key Performance Indicators 

(KPIs) that can reflect user experience with high accuracy and 

quantify the interests of the network stakeholders, and 

solutions that are not just reactive but also proactive [10]. ML-

based SON solutions can help overcome these challenges.  

 

Fig. 4 Basic structures of ML categories 

 

C.  User-Centric Approaches 

A user-centric approach is one where the network design 

and strategies will be developed with the end-user as the point 



 

of focus, and network solutions will be tailored per the needs 

and feedback of the end-users. Network operators have 

witnessed a gradual decline in the average revenue per user 

(ARPU) over the years and the end-users have got accustomed 

to the flat rate tariffs. The network operators are expected to 

deliver significantly increased operational performance (e.g. 

increased spectral efficiency, higher data rates, low latency), 

as well as superior user experience (approaching that of 

wireline, fixed networks but offering full mobility and 

coverage) and the need to deploy massive deployments of 

Internet of Things networks, while still offering acceptable 

levels of energy consumption, equipment cost and network 

deployment and operation cost [11]. Therefore, it is extremely 

significant that 5G developments are based on use-cases that 

are more user-centric opening up new revenue streams for 

network operators. A user-centric approach is at the heart of 

5G, where connectivity, computing, and content all come 

together, close to the user, be it a human, a vehicle, a machine, 

or a “thing,” where users will no longer be mere end-points, 

rather they will be integral parts of the network, creating 

edgeless connectivity [12].  There are multiple network-centric 

approaches taken in the state-of-the-art literature, but user-

centric approaches are still rare [13] and need more attention 

as 5G mobile networks evolve to new architectures and modes 

that will include densely deployed network nodes, cell-less 

architectures, dynamic coordinated multi-point techniques, 

enhanced mobile broadband, Internet of Things, ultra-reliable 

low latency connections, vehicle-to-X communication, multi-

access edge computing, and spatial computing (e.g., virtual 

and augmented reality) as shown in Fig. 5. 

 

Fig. 5 5G usage scenarios [11] 

 

III. APPLICATIONS AND METHODOLOGIES 

User-centric, ML-based SON solutions would have the 

capability to support 5G requirements and features such as 

network densification and heterogeneity, dynamic network 

optimization and troubleshooting, organization of 5G network 

topology that would involve end-to-end network slicing and 

cell-less architectures, flexible spectrum management and 

resource allocation based on ML predictions, and security 

management by self-protection against digital threats. 5G aims 

to go beyond the needs of what humans can currently perceive 

and empower new types of services and user experiences with 

lower latency, cost, and energy consumptions that cannot be 

achieved by conventional non-user centric approaches [12].  

Given the importance of SON, ML, and user-centric 

approaches in developing the next generation wireless 

communications eco-system, it is crucial that future research 

directions emphasize on exploring user-centric approaches to 

realize next generation self-organizing networks using 

machine learning. Following are some recent research 

initiatives of our team in this direction that focus on user-

centric, ML-based solutions for anomaly detection and load 

balancing and optimization in 5G SON networks.  

A. QoE driven Anomaly Detection in SON 

Anomaly detection in SON involves detection of 

dysfunctional network nodes to ensure fast and seamless 

recovery. The state-of-the-art approaches for detecting failing 

network nodes include alarm monitoring, routine checks of 

configuration parameters and counters, collection of traffic 

data to profile the behavior of the network, RSRP and SINR 

measurements, incoming handover measurements from 

neighboring cells, keeping track of customer complaints, and 

analyzing other KPIs to detect any degradation. Although the 

above-mentioned approaches are useful techniques for 

anomaly detection, they have a few limitations. Alarm 

monitoring and configuration parameter checks may not be 

able to detect sleeping cells. Drive test data, RSRP, and SINR 

measurements can get affected by poor RF conditions due to 

temporary reasons like ducting or external interference that 

may not be due to faulty network nodes. The number of 

handover attempts made could be less or more affecting the 

results of the detection method based on handover 

measurements. Customer complaints may provide limited 

information. KPI analysis is crucial in anomaly detection and 

needs more user-centric KPI’s such as Quality of Experience 

(QoE) to evaluate and detect dysfunctional nodes.  

The use of QoE-driven anomaly detection for SON using 

ML methodology to learn and predict the QoE has been 

proposed [14-15] where the QoE scores are predicted for all 

the end-users of a network and these scores are further used to 

detect dysfunctional network nodes in that network. This 

method is evaluated using the LTE-EPC network simulator of 

ns-3 [16] that creates an end-to-end network scenario 

generating representative data that is fed to a supervised ML 

program whose labels are generated using a parametric QoE 

model for FTP services given the type of application run in the 

ns-3 simulation is FTP. The ML model learns how to predict 

QoE scores (range: 0 to 5) of all the users in the network after 



 

being trained by an ML algorithm. If the maximum number of 

users connected to a network node have poor QoE scores 

(range: 0 to 1), then such a node is identified as a 

dysfunctional node.  

The performance of three different ML algorithms, support 

vector machine, k-nearest neighbors and an optimized version 

of decision tree was investigated, whose accuracy results for 

QoE prediction for the given dataset are summarized in Fig. 6. 

Subsequent to QoE prediction, the QoE scores obtained using 

each of the three ML algorithms could successfully detect 

dysfunctional network nodes with near certainty.  

Fig. 6. ML-based performance comparison for QoE prediction 

 

Additionally, the performance and scalability of the ML 

algorithms are further evaluated by creating different network 

scenarios by embedding three different propagation path loss 

models (Friis propagation, Log-Distance propagation, and 

Cost 231 propagation [16]) in the ns-3 simulation. The 

accuracy results for QoE predictions are shown in the Fig. 7.   

 

Fig 7. QoE prediction accuracy with different propagation models 

 

This ML-based QoE-driven anomaly detection method for 

SON is a resource-efficient method that has the potential to 

support the future green communications network design as it 

would be able to distinguish between dysfunctional network 

nodes from partially switched off nodes in energy saving mode 

and should be further enhanced to support a wide range of 

applications. Combining this method with the existing 

techniques of KPI analysis for anomaly detection can provide 

highly robust and reliable methods for anomaly detection 

supporting the ultra-dense 5G networks with the expected 

benefits of an improved understanding of end-users’ 

perspective, and resource-efficiency by effectively prioritizing 

recovery operations supporting high-density network. 

B. Optimal-Capacity Shortest Path Routing for Mobility Load 

Balancing and Optimization in SON 

Mobility Load Balancing (MLB) in SON is critical to 

efficiently deliver the required user capacity over the available 

spectrum resources. MLB is a function where cells suffering 

congestion can transfer the load to other cells that have spare 

resources [6]. The state-of the-art approaches for load 

balancing and optimization include strategies such as a 

channel borrowing mechanism [17] where a cell can borrow a 

fixed number of channels from adjacent cells, handover-based 

approaches where UEs are handed off between serving and 

neighboring cells [18-20], and remote electrical tilt [RET] 

optimization [21]. While these are some very useful 

techniques that can be applied for load balancing and capacity 

optimization, there are some limitations and challenges. If the 

adjacent cells in the channel borrowing mechanism do not 

have enough resources to share, it can lead to even more 

congestion. Handover parameter changes to offload traffic 

from the congested cell can lead to instability and handover 

drops due to the ping-pong effect. RET controllers may have a 

limited range to perform tilt adjustments. If a RET is broken, 

the electrical tilt changes cannot be made until the RET is 

fixed which can take several days, especially in the cases 

where antennas are mounted on the top of a tower. These 

network-centric approaches can be further enhanced by 

implementing a user-centric approach, where the shortest path 

with optimal capacity available is pre-determined and 

recommended to the end-user given its source and destination.  

A user-centric methodology for MLB and capacity 

optimization in SON networks called User Specific, Optimal 

Capacity and Shortest Path (US-OCSP) is proposed [22] that 

performs user-specific dynamic routing to find the shortest 

path with optimal capacity, given source and destination.  The 

primary metrics and tools implemented in this methodology 

include determination of available nodal capacity per 

gNodeB/eNodeB by calculating Physical Resource Blocks 

(PRB) utilization followed by determination of the shortest 

path via implementation of Q-learning, an ML reinforcement 

learning technique. The methodology was tested in a simulated 

environment where the optimal-capacity shortest path was 

recommended in an ns-3 based LTE-EPC network scenario 

created where PRB utilization was calculated for every 

network node to identify which of the network nodes are 

congested vs. the ones that have available capacity. This 



 

information was then fed to the ML program based on Q-

learning. The recommended path given by the methodology 

was the optimum path discarding any path that goes via 

congested network nodes and all other paths that may be 

longer than the recommended path. This way, the network can 

be operated in a more efficient manner by reducing congestion 

in the network and meeting the capacity requirements of the 

end-users.  

US-OCSP can create a win-win situation for end-users as 

well as the network, since the end-users will be served with 

good capacity throughout the route and the network will be 

less congested, as the users’ path will avoid already or almost 

congested network nodes. An in-built application for 

navigation based on this methodology can play a significant 

role in future networks where a network layout provided by 

US-OCSP can be overlapped with topography recommending 

the shortest path with optimal capacity to end-users.  

IV. CONCLUSIONS 

This paper makes the case that a paradigm shift in the 

deployment, performance, and optimization of wireless 

communications networks by the integration of user-centric 

approaches, SON, and ML is required in order to meet the 

complex requirements of the next generation 5G wireless 

communications networks. The paper also proposed research 

methodologies for SON functions to enhance anomaly 

detection, load balancing and capacity optimization. ML-based 

user-centric approaches for next generation SON networks are 

quite promising and are expected to be further explored to 

realize the vision of creating and developing a seamlessly 

connected eco-system with superior user experience. 
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